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Abstract – Estimation of asynchronous circuit performances, 
such as speed, is one of the major issues that make that design 
style still less popular than it deserves to be. Evaluating the worst 
case delays in the paths of an asynchronous circuit using a simple 
logic simulator would be very useful in overcoming this problem. 
In this paper a method for timing analysis of the asynchronous 
non-sequential circuits using a VHDL simulator is presented. 
With an appropriate extension of the standard logic simulation 
process, all worst case delays for all paths in a digital circuit with 
only one run of the simulation can be obtained. High levels of 
accuracy are achieved using different gate modelling and 
statistical analysis of the results. Due to the lack of asynchronous 
benchmark circuits, the method is verified on a set of asyn-
chronous circuit selected by the authors.  

I. INTRODUCTION

Digital circuit design styles can be classified into two 
major categories, namely synchronous and asynchronous. 
A hybrid design style mixes aspects of both categories. The 
major differences between synchronous and asynchronous 
circuit lie in the system timing. Synchronous circuits may 
be simply defined as circuits which are sequenced by one 
or more globally distributed periodic timing signals called 
clocks. Any state change that occurs  happens on the clock 
edge, and so system states are predictable. All these issues 
provide a basis for good design, and simulation tool 
support. Asynchronous circuits are an inherently larger 
class of circuits, since they use events to control timing [1], 
and no clock is used to implement sequencing. Such 
circuits are also called clockless [2], [3]. Their timings are 
very difficult to predict and it is the main reason for poor 
design tool support [4]. 

Although asynchronous design is still a less travelled 
road for designers, the benefits of this design style are 
unanswerable. Such circuits need no clock generation and 
distribution, which saves a lot of chip area, and they leave 
the problems related to clock skew behind. Asynchronous 
circuits are characterized with good modularity and much 
easier technology migration. Power is consumed only when 
useful work is done. The absence of the clock itself, redu-
ces the power consumption. These issues are very impor-
tant while designing portable systems where battery size 

and lifetime are important. Very low EMI occurs during 
operation, while achieving high noise immunity [4].  

There is a lack of motivation for asynchronous circuit 
techniques since synchronous circuit design styles have 
large commercial practice and considerable pedigree [1]. 
For some, the motivation to pursue the study of asynchro-
nous circuits is based on the simple fact that all high-per-
formance “synchronous” design styles are “asynchronous 
in the small” [5]. Because of that, some techniques for 
desynchronization of synchronous circuits have appeared 
lately [6], [7].  

Nevertheless, some problems related to asynchronous 
circuit design are still waiting to be solved. One of the most 
important is the estimation of asynchronous circuit 
performances. That is, determining the delays of the paths 
in a particular asynchronous circuit.  Early evaluation of 
the paths delays in the circuit helps in avoiding early timing 
problems as well as in circuit performance characterisation. 
Precise paths delays can be estimated in the final steps of 
the design process. The delay is extracted from the circuit 
after layout synthesis. If the delays do not satisfy the 
required speed of the circuit, the circuit has to be 
redesigned. The same conclusion stands when timing prob-
lems occur. This strongly suggests that delay estimation 
should be performed during the early phases of circuit 
design. 

Simulation is the simplest way to determine the circuit 
delay. For complex circuits, simulation at the transistor le-
vel becomes impractical. To verify the logic function and 
the timing specifications of the circuit, logic simulators 
dealing with gate level descriptions are used. However, the 
delay of the circuit obtained by a logic simulator depends 
on the input test vectors. In order to determine the longest 
and the shortest possible delays in a combinational circuit, 
it has to be simulated using all 2n possible input vectors, 
where n is the number of inputs. Therefore, the simulation 
becomes inefficient for most circuits. On the other hand, 
since logic simulation is one of the first design steps, em-
bedding worst-case delay analysis into a logic simulator 
would ensure early detection of incorrect design solutions. 

Parameter values in electronic circuits’ component 
vary because of the following causes: process and techno-
logy; environment and temperature; and specific pheno-
mena within components (such as electromigration). These 
variations affect the circuit behaviour over time. Because 
of them, a 100% yield is not achievable since the responses 
of all the manufactured circuits do not satisfy the required 
timings. The nature of parameter variations is statistical in 
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the sense that all parameter values are random within a 
probability interval. As a result, the response values in par-
ticular delays, are also randomly distributed within an in-
terval that depends on the nature of the mapping of pa-
rameter tolerance onto response tolerance [8].  

Timing analysis tools perform the timing analysis of a 
circuit consisting of primitive gates. They can calculate 
circuit delays that are the result of parametric variations. 
The aim of statistical timing analysis is to find how much 
time might be needed to guarantee that the response of the 
circuit to any input vector would always be obtained within 
that time [9].  

Commercial timing analysis systems are based on 
statistical timing verification. A problem that often appears 
in statistical timing analysis is that the longest paths often 
become false paths. Moreover, in DSM (deep-submicron) 
technologies, almost every path can be considered critical. 
(The critical path of a digital circuit is the longest path or 
the path with the largest delay between the input and the 
output of the circuit [10].)  

Sampling methods and direct methods can be used in-
stead of worst-case and statistical timing analysis. In direct 
methods, it is assumed that formulae for mapping the para-
meter tolerances into the response tolerances are available. 
These methods are usually limited to cases where the para-
meter variations are small. Nevertheless, this analysis is, 
although more accurate, still very time consuming, since it 
requires all gate sensitivities with respect to all possible va-
riations to be calculated.  

Our aim in this paper is to demonstrate the application 
of a standard logic simulator in asynchronous circuit path 
delay analysis. Some known methods for timing analysis 
will be given and compared. A new and very efficient pro-
cedure for worst-case delay estimation which can introduce 
statistical approach and is based on an accurate delay mo-
del that takes into account the fanout influence on the total 
delay will be presented. The procedure is based on netlist 
modification, multiple simulations and statistical data pro-
cessing. This required specific modelling of the asynch-
ronous circuits’ building blocks. A VHDL implementation 
of the method follows. The problem in the verification step 
of the proposed method is the lack of asynchronous bench-
mark circuits. The method is verified on a set of chosen 
asynchronous circuit. All results show the excellent 
performance of the method. 

II. WAYS TO ANALYZE TIMINGS

The purpose of timing analysis is to determine the 
following timing constraints: 
· Do the signals arrive at pins in time? 
· Do the signals stay long enough at the required state to be 

useful? 
· Will the signals propagate with a proper slew (slope)? 
· Can the hardware run with a specified speed? 
· Are there any paths which need further analysis and 

modification? 

Timing measurements, as already mentioned, can be 
performed using a circuit simulation, but such an approach 
is too slow and impractical. To avoid simulations, there are 
two alternative approaches for delay estimation in logic 
circuits. The first is based on Static Timing Analysis (STA) 
and Statistical Static Timing Analysis (SSTA), while the 
second includes Monte-Carlo analysis.

STA methods evaluate digital circuit timing without 
simulation. For nanometre manufacturing processes, which 
have increased parameter variability, a corner-based STA 
has become inadequate. To avoid this problem, a statistical 
approach has been proposed: statistical static timing 
analysis (SSTA). As a result of SSTA analysis pdfs 
(probability density functions) are obtained. The 
percentage of fabricated dies which meet a required delay, 
can then be calculated or conversely, the expected 
performance for a particular yield [11]. The probabilistic 
nature of the timing behaviour of a circuit imposes the 
statistical analysis and simulation in the selection of critical 
path. However, even with their clear advantages, 
developing and using statistical models and methods 
requires considerable effort. The complexity of the 
statistical techniques is still significantly high. These can 
be reasons for avoiding statistical methods, but higher 
process integration and increasing operational speed also 
make them inevitable [10]. 

The Monte Carlo method requires a large number of 
circuit simulations (analyses), giving the mean and 
standard deviation of the delay at the output of the circuit 
as the results. Monte Carlo simulation has two steps: a 
sampling step and an analysis step. In the sampling step, 
for a given set of parameters (delays of gates in this case) a 
single random value is chosen according to the given 
probability distribution. 

An analysis of the circuit must be performed for each 
new parameter value. In this way a set of different para-
meter values of the circuit output signals are obtained. The 
analysis step utilizes these sampled values to derive the ar-
rival times of all output signals for the given circuit instan-
ce. The desired accuracy determines convergence criteria 
of the results. Once the mean or variance converges to the 
desired precision range, the procedure terminates. It takes 
from a few tens to a few hundreds of Monte Carlo 
simulations to achieve convergence of the results. This 
means that the timing analysis step should be repeated that 
many times [12]. However, since each iteration of Monte 
Carlo analysis involves a transistor level simulation of the 
entire circuit (or the entire circuit path), this approach will 
have an unacceptable run time [13]. 

The use of a logic simulator for the timing analysis in 
the Monte Carlo analysis can significantly speed up the 
design and analysis time. A new, simplified way for timing 
analysis with a VHDL logic simulator will be presented 
next. It simplifies the delay evaluation procedures and 
speeds them up. In this way a good base for evaluation of 
asynchronous circuits performances is established. This 
method will now be explained in more detail. 



III. DELAY ESTIMATION WITH A LOGIC
SIMULATOR

Our method for path-delay estimation in asynchronous 
non-sequential digital circuits is based on a robust delay 
estimation algorithm. It makes sense to analyze the circuit 
paths only in one operating sequence. Because of that, the 
suggested method cannot deal with circuits with feedback 
loops, unless they are broken. The proposed concept can 
enable acceleration of Monte-Carlo analysis if it is 
embedded within the analysis step of the Monte-Carlo 
loop. The sampling step of the Monte-Carlo analysis is 
performed in the usual manner.  

To perform a delay estimation of all the paths in a 
circuit using a logic simulator, that is a timing analysis, a 
small modification to the logic simulation mechanism is 
needed [14]. Neutral events that do not change the logic 
value of the signal in a standard logic simulator are 
ignored. If the signal description is extended to have a few 
additional attributes, such as event, delay value, etc [10], 
[15], then a change in any of those attributes will be consi-
dered as a non-neutral event. Simultaneous propagation of 
all input vectors through the circuit is assumed. The values 
of delay attributes are accumulated along structural paths, 
starting from the primary inputs and ending at the primary 
outputs or, if necessary, any particular node inside a circuit. 
At the end of this very fast delay estimating process, after 
only one run of the logic simulator, all delays of both 
output signal edges are available. 

A. Modelling signals and gates  

For each output signal of the circuit, S, four delay 
values are estimated: 
d1mn(S) - the shortest path delay for a rising edge at S, 
d0mn(S) - the shortest path delay for a falling edge at S, 
d1mx(S) - the longest path delay for a rising edge at S, 
d0mx(S) - the longest path delay for a  falling edge at S. 

In order to evaluate all worst-case path delays to all 
the signals in the circuit with only one simulation, it is ne-
cessary to perform simultaneous simulation of the circuit 
for all input vectors. To enable this, signals that connect lo-
gic gates within the circuit must contain two types of infor-
mation: events on the signal and the shortest and the lon-
gest path delays to the signal. This information is stored 
within a signal description in the form of two types of 
attributes: attributes that contain the delay information, as 
listed above, and the attributes for triggering the delay cal-
culation processes in a gate. For a signal, S, the four attri-
butes for triggering the calculation are: 
arr1mn(S) - rising transition of shortest path arrival flag, 
arr0mn(S) - falling transition of shortest path arrival flag, 
arr1mx(S) - rising transition of longest path arrival flag, 
arr0mx(S) - falling transition of longest path arrival flag. 

It should be noticed that the signal now does not 
contain any logic values, as would be the case in a standard 
logic simulation. 

For process signals described in this way and to 
perform the delay estimation, the gate model must include 
two modes: the activation-propagation mode and the delay 
calculation mode. Moreover, the gate description must con-
tain two separate processes; first to calculate the maximal 
delay of the falling and rising transitions, and the second to 
calculate the minimal delay of the falling and rising 
transitions. The activation-propagation mode of the model 
in each of these processes in a gate is sensitive to every 
change of the signal triggering attribute. After the delay 
calculation level of the model is activated, it then updates 
the output signal delay according to the input signal delay 
attributes and gate delay parameters. When the resulting 
output delay type (delay attribute of the output signal) is 
calculated, the output signal changes the particular 
triggering attribute to trigger processes in the following 
gates.  

Fig. 1. Process for assigning the maximal delay of the falling and 
rising edges for a two input NOR gate. 

An example of the process for assigning the maximal 
delay of the falling and rising edges for a two input NOR 
gate is shown in Figure 1. The gate inputs are denoted as 
in1  and in2, and the output as out1. The gate propagation 
delays for the rising and falling edges at the output out1 are 
denoted by tpd_lhmx (maximal time propagation delay 
from low to high) and tpd_hlmx, respectively. Each rising 
transition at an input of the gate means that one of the 
falling transition flags at one of the input signals 
(in1.arr1mx or in2.arr1mx) becomes “true”. This sets a 
rising transition flag at the output signal attribute of the 
gate (out1.arr1mx) to “true”. This corresponds to an OR 
function. Simultaneously with setting the output flag, the 
gate model calculates a new value for the longest path de-
lay. The resulting output longest path delay attribute for the 
falling edge is denoted by out1.d0mx and is calculated after 
taking into account the arriving longest path delays for both 
gate input signals (in1.d1mx, in2.d1mx), the maximal delay 
of the falling edge for this gate (a separate function assigns 
this value) and the function f which depends on the gate 

 generic ( ifo_izl: integer:= 1; 
  tpd_hlmn : real := 0.9e-9; 
  tpd_lhmn : real := 1.0e-9; 
  tpd_hlmx : real := 0.95e-9; 
  tpd_lhmx : real := 1.05e-9); 

. . .
p2: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx, 

in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx) 
 variable r,p: real; 
 variable multipl : real; 
 begin     

     multipl := real(ifo_izl); 
     f<=fanout_func(multipl) 
     r:= (f*0.95 + 0.03*(gauss_rng));    

p:= (f*1.05 + 0.03*(gauss_rng));          
if (in1.arr1mx or in2.arr1mx) then 

        out1.d0mx   <= max(in1.d1mx, in2.d1mx) + r; 
        out1.arr0mx <= true; 
     end if; 
     if (in1.arr0mx and in2.arr0mx) then 
         out1.d1mx   <= max(in1.d0mx, in2.d0mx) + p; 
         out1.arr1mx <= true; 
     end if; 

 end process p2; 



fanout value. Conversely, a falling transition flag at any of 
the gate input signals (in1.arr0mx, in2.arr0mx) produces a 
rising transition at the output only if a falling transition has 
previously arrived at the other gate input [9], [16]. This 
corresponds to an AND function. The resulting output 
longest path delay attribute for the falling edge, denoted by 
out1.d1mx, takes into account arrived longest path delay 
input signal attributes (in1.d0mx, in2.d0mx), the maximal 
delay of the rising edge for this gate and the fanout 
dependent function f. A similar process for the shortest path 
delay estimation is given in process_mn. A delay model of 
arbitrary complexity can be applied. In this figure, it is also 
shown that the delays of a particular gate can be generated 
by different random functions which can take into account 
different input signal slopes, loading capacitances and other 
parameters that influence the ranges of rising and falling 
gate delays, tpd_lhmx and tpd_hlmx.

Fig. 2. Illustration of maximal delay estimation method for a 3-
input C element. 

The basic principle of delay accumulation is described 
in Figure 2. The figure describes the maximal delay 
calculation of all paths in the simple asynchronous circuit 
called C-element. Here, both rising and falling transitions 
are applied to all inputs of the circuit. Both the rising and 
falling transition delays are updated by each gate. The 
delay estimation of the circuit stops when all transitions 
reach the primary outputs. To analyze delays of the paths 
the feedback line had to broken. 

B. Giving the delay to a gate

In order to calculate four different worst case delays 
for all paths in one digital circuit, the gate models must 
contain all four types of delays. It means that each gate in a 
circuit is characterized with four parameters: the maximal 
delay of the rising edge, the maximal delay of the falling 
edge, the minimal delay of the rising edge and the minimal 
delay of the falling edge. Nevertheless, assigning a 
particular delay to the gate and calculating the result is a 
complex task. There are two delay components in each of 

gate delay functions (they are denoted with r and p in 
Figure 1). One takes into account the fact that we want to 
use the gate models for statistical worst-case delay 
estimation, and the second must take care of the netlist of 
the entire digital circuit, that is the fanout information for 
each gate in the circuit. This is expressed by the Eq. 1: 

random_value_of(tpd_lhmx/tpd_hlmx/tpd_lhmn/tpd_hlmx) 
*fanout_func(output)                            
=func(tpd_lhmx/tpd_hlmx/tpd_lhmn/tpd_hlmx) (1) 

Considering the first component, we must introduce 
randomness into the delay assignment process. This is the 
crucial step which enables Monte Carlo analysis. The need 
for statistical delay analysis comes from the variations of 
the circuit parameters. Therefore, the delay estimation me-
thod must also include the influence of parameter variance 
on minimal and maximal delays of all signals in the circuit. 
If the delays were modelled as fixed values, the worst case 
delay values would not be the real worst case values due to 
the process variations. If we consider this fact, we conclude 
that the solution to this problem can be delay estimation in 
the usual manner, while all delay ranges in each gate ins-
tance are generated randomly. Each time the calculation 
process is activated in a gate, new worst case delay values 
are considered in the signal delay calculations. Since sim-
ple models are used and the calculations are still very time-
efficient, the simulations can be performed a few hundred 
times to enable statistical delay analysis. In this way a 
method for statistical static timing analysis using a standard 
logic simulator has been developed (SSTA for SLog).

The given delay probability density function determi-
nes the delay randomness. Hence the gate parameters are 
the mean values of the probability density function for a 
particular gate type. The gate delay information given as 
parameters incorporates the real fabrication variations of a 
particular technology since worst-case delay distributions 
are characterized with mean and variance values that 
should be given as the fabrication technology parameters. 
Each gate randomly generates the maximal and minimal 
delays of the rising and falling edges with a Gaussian 
distribution, with the mean and standard deviation defined 
according to Eq. 2, 
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where p represents the mean value and p
2 is the variance 

of the random variable p [8]. This function can, of course, 
be changed if necessary. 

The second component of equation (1) deals with the 
real position of the particular gate in the netlist of the entire 
circuit. It is well known that the delay of the output signal 
for a single gate depends on the number of gates that are 
driven by that particular gate. If a gate has to drive two ga-
tes, the delay is larger than in the case of driving a single 
gate. In order to increase the accuracy of the gate delay 
model and the entire delay estimation algorithm, the fanout 
information of each gate in the circuit netlist must be 



included in the delay calculations. To do this, two major 
modifications must be introduced. One modification affects 
the logical gate descriptions. The second must be perfor-
med on the digital circuit netlist. In this way, the real 
implementation of the circuit is taken into account. For 
example, if one gate output drives two inputs of following 
gates, it means that all delays of the particular gate will be 
increased according to the approximation function. Also, 
the technology has a large impact on the 
fanout_func(output) value, since the function that gives the 
fanout dependence of the delay is specific to each 
technology and each gate type, and would be given by the 
manufacturer. The VHDL implementation of this idea will 
be shown later. 

C. The path delay estimation algorithm  

For statistical estimation of worst case delays, that is 
SSTA using a standard logic simulator – it is necessary to 
perform a few hundred estimation simulations. The exact 
number of simulations is determined by the required 
precision and accuracy of the results. Table 1 gives a 
description of estimation phases for one sample.  

The delay values of a particular gate have standard 
deviation , which is in our case set to be 3%. This can be 
varied if necessary. This value is derived from the 
parameter tolerances for an integrated circuit fabrication 
technology.

The circuit is described and simulated at the structural 
(gate) level, while having available delay ranges values 
(minimum and maximum delays) of all building blocks for 
both rising and falling edges. When this estimation process 
is embedded in a Monte Carlo loop, the delays for a gate in 
a circuit will be characterized with a mean and a variance 
and then randomly chosen in each estimation process. At 
the start of the simulation, the circuit is excited with both 
rising and falling transitions at all primary inputs. This is 
referred to as the initialization phase, where all triggering 
attributes of all signals at the primary circuit inputs are set 
to “true”, that is the transitions at all primary inputs are 
initialized. All these transitions initiate the estimation 
processes in the gates at the first topological level of the 
digital circuit. When these processes are completed, the 
processes in the first topological level gates activate the 
transitions at their outputs to enable the calculation 
processes of the gates in the second topological level. As 
the transitions propagate from primary inputs towards 
primary outputs, the gate delays are accumulated along the 
paths, since an activation transition for the gate output 
signal is possible only if the delay of that gate has been 
already estimated. Signal attributes for the delay 
calculation and the calculation activation are used by the 
processes in the gate models and their values are 
dynamically updated, while the wave of activation shifts 
from the input to the outputs of the gates and the entire 
circuit. Once the circuit calculation activity is exhausted, 
the shortest and the longest path delays are available in 

signal attributes d1mn, d1mx, d0mn and d0mx of each 
output signal in the circuit.  

It should be mentioned that these simulations also do 
not require any kind of stimuli, since they take into account 
all possible signal transitions. Only initialization is needed 
for the calculation processes in the entire circuit.

TABLE I 
PATH DELAY ESTIMATION ALGORITHM WITH A LOGIC SIMULATOR
Input:

Output:

step 1: 

step 2: 

step 3: 
initialize 
step 4: 

-Ranges of delays for rising and falling transition 
for each gate 
-circuit netlist 
-library of circuit elements described to support 
the timing analysis 
-Ranges of delays for rising and falling transition 
for all circuit output signal 

-Set all signals in the circuit to be a composite type 
consisting of the following attributes: 

4 different delay information (maximal and 
minimal delays of rising edge and  
maximal and minimal delays of falling 
edge)

4 different flags for triggering each delay type 
calculation in a particular gate 

-Initialize all signals triggering flags to "false" 
value. Setting them to value "true" starts the 
calculations. 
-Initialize all signals to have zero values of the 
delay attributes 
-Initialize the calculation process by setting the 
primary input signal triggering flags to "true" 
-Until all signals and gates are processed (all 
signal triggering flags should be set to "true") 
perform the following steps by moving through 
the topological levels of the circuit:  
-The delay calculation is activated when all input 
signals of the gate have triggering flags set to 
"true". When the delay calculation depends on the 
logic function of the gate, it is taken into account. 
For example, each falling transition (flag for 
falling transition is set to "true" at the input of the 
gate) at an AND gate input, produces a falling 
transition at its output (sets the gate output signal 
triggering flag for falling transition to "true"), but 
a rising transition at an input is able to produce a 
rising transition at the output only if the rising 
transition had previously arrived at all other gate 
inputs.
-In order to complete all attributes of the gate 
output signal, before activating its output 
transition flag, the corresponding gate delay 
should be calculated by processing delays that 
arrived with input signals of the gate. The 
particular delay of the chosen gate is also added to 
the resulting corresponding delay. 
-The estimation terminates when all triggering 
flags for all output signals are set to "true". 

IV. IMPLEMENTATION

As mentioned before, the proposed concept is 
implemented using the VHDL hardware description 



language and simulator. Matlab was used for processing 
data obtained after simulations.  

In order to have statistical simulation results, a 
random number generator is needed. Figure 3 show a 
VHDL implementation of the random number generator 
with a Gaussian distribution [17].  

Fig. 3. Gaussian random function generation implementation.

This function is executed 4 times in each of the gates, 
once for each delay type. Function rand in this description 
generates random numbers in the interval [0,1], with a 
uniform distribution. 

In order to verify the efficiency of the applied gate 
models, we created a simple test circuit that consists of 
only one logic NAND gate. This circuit was simulated 600 
times and the results of the randomly generated delays of 
rising and falling edges at the output of this circuit are 
shown in Figure 4. In this case, the mean in the distribution 
is set to 1ns while the standard deviation is 3 %. The x-axis 
shows the delays in [ns] units, and the y-axis represents the 
number of particular delay appearances within the 
corresponding range. 

Fig. 3. Histogram of the delays for NAND gate.

VHDL models of primitive logic gates and simple 
asynchronous elements are kept in a VHDL library. Figure 
4, 5, and 6 show VHDL modelling of a D-latch, T-latch 
and 2-input C-element respectively. It should be noted that 
latch circuits do not have specific conditions for activating 
a calculation process, because these circuits have only 1 
data input. It should also be emphasized that the T-latch 
performs output change only when a falling transition 
happens at its data input. Accordingly, only the delay of the 
falling edge at its input can influence the delay calculation 
process further. 

Fig. 4. VHDL model of the Dlatch. 

Fig. 5. VHDL model of the T-Latch.

entity DLatch is 
generic (ifo_izl: integer:= 1; 
 tr_en_qmn : real := 1.0e-9; 
 tf_en_qmn : real := 0.9e-9; 
 tsu_d_enmn : real := 0.45e-9; 
 tr_en_qmx : real := 1.05e-9; 
 tf_en_qmx : real := 0.95e-9; 
 tsu_d_enmx : real := 0.55e-9);     
port (q : out SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false, 
false); 
d, en: in SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false, 
false));                
end DLatch;   

architecture only of DLatch is 
begin

p1: process  (en.d0mn, en.d1mn, en.arr0mn, en.arr1mn, 
en.d0mx, en.d1mx, en.arr0mx, en.arr1mx) 
 variable i, j, k ,l, m, n: real;   
 variable multipl : real; 
begin     

 multipl := real(ifo_izl);   
f<=fanout_func(multipl) 

 i:= (f*1.0 + (0.03*(gauss_rng))); 
 j:= (f*0.9 + (0.03*(gauss_rng)));   
 k:= (f*0.45 + (0.03*(gauss_rng)));    

l:= (f*1.05 + (0.03*(gauss_rng)));  
 m:= (f*0.5 + (0.03*(gauss_rng)));  
 n:= (f*0.55 + (0.03*(gauss_rng)));  

q.arr1mn <= true; 
q.arr0mn <= true; 
q.d1mn <= en.d1mn + i + k;   
q.d0mn <= en.d1mn + j + k; 
q.arr1mx <= true; 
q.arr0mx <= true; 
q.d1mx <= en.d1mx + l + n;     
q.d0mx <= en.d1mx + m + n; 

end process; 
end only;

entity TLatch is 
generic (ifo_izl: integer:= 1; 

tr_en_qmn : real := 1.0e-9; 
tf_en_qmn : real := 0.9e-9; 
tr_en_qmx : real := 1.05e-9; 
tf_en_qmx : real := 0.95e-9); 

port (q : out SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, 
false, false); 

t : in SDA_std_logic := (0.0, 0.0, false, false, 0.0, 0.0, false, 
false));                

end TLatch;   
architecture only of TLatch is 
begin

p1: process (t.d0mn, t.d1mn, t.arr0mn, t.arr1mn, 
t.d0mx, t.d1mx, t.arr0mx, t.arr1mx) 

variable i, j ,k, l: real;   
variable multipl : real; 

begin     
 multipl := real(ifo_izl); 

f<=fanout_func(multipl) 
 i:= (f*1.0 + (0.03*(gauss_rng))); 
 j:= (f*0.9 + (0.03*(gauss_rng)));  

 k:= (f*1.05 + (0.03*(gauss_rng))); 
 l:= (f*0.95 + (0.03*(gauss_rng)));    

q.arr1mn <= true; 
q.arr0mn <= true; 
q.d1mn <=  t.d0mn + i ; 
q.d0mn <=  t.d0mn + j ; 

 q.arr1mx <= true; 
 q.arr0mx <= true; 
 q.d1mx <= t.d0mx + k ;      
 q.d0mx <= t.d0mx + l ;   

end process; 
end only;   

function gauss_rng return real is 
variable u1, u2, v1, v2, r, q, p: real; 
begin

 loop u1:=rand; 
  u2:=rand; 
  v1:=u1*2.0 -1.0; 

v2:=u1*2.0 -1.0; 
r:=v1*v1 + v2*v2; 
exit when r<1.0; 

 end loop; 
 q:=log2(r); 
 p:=(sqrt((0.0-2.0)*q/r))*v1; 

return p; 
end function gauss_rng; 



Fig. 6. VHDL timing processes for the 2-input C element. 

Fig. 7. Testbench process for writing simulation results for 
minimal delay of the rising edge of all encoder output signals into 
a file. 

To simulate the circuit 600 times, a specific VHDL 
testbench is necessary. Here the netlist is instantiated a few 
hundred times. Now, for each particular input of all these 
circuits, and for initialization and for the simulation itself, a 
specific matrix is formed. All responses to the logic 
analysis are stored in the matrix. Matrices of input and 
output signals are defined with variables of type input_mat 
and output_mat. This is shown in Figure 8. This code 
contains the description of the process that performs the 

timing analysis – log_timing1, which is used for 
determining the minimal delay of the rising edges of the 
output signals for one asynchronous encoder circuit. This 
circuit 5 outputs. All results of this analysis are written to a 
text file (encoder_mn_r.statdel). 

V. EXAMPLES

When a circuit is simulated 600 times, a huge amount 
of data can be expected. Since each gate model consists of 
four parallel processes, for each of the signal transitions, 
that gives the equivalent to four parallel simulations during 
each run of the analysis. In effect, 4*600=2400 simulations 
are performed per output. For a circuit that has a small 
number of outputs, the resulting statistical data can be 
presented in the form of a histogram. 

Figure 8 shows the results obtained for C-element, 
described as a logic gate. This is the easiest form of 
statistical representation of the simulation results. It is 
adequate only for circuits with a small number of outputs. 

a)

b)
Fig. 8. Histogram of the C-element gate.

Table II shows the simulation results of the C-element 
described at the structural level of abstraction shown in 
Figure 2. The first column of the table shows the output 
number, the second shows the delay type for that output, 
and the third column gives the topological level of the 

p1: process (in1.d0mn, in1.d1mn, in1.arr0mn, in1.arr1mn, 
 in2.d0mn, in2.d1mn, in2.arr0mn, in2.arr1mn) 

variable r,p: real; 
 variable multipl : real; 
begin      
 multipl := real(ifo_izl);  

f<=fanout_func(multipl) 
 r:= ((f*1.0) + (0.03*(gauss_rng)));   
 p:= ((f*0.9 + (0.03*(gauss_rng)));  
 if (in1.arr0mn and in2.arr0mn ) then 
  out1.d0mn   <= min(in1.d0mn, in2.d0mn) + r; 
  out1.arr0mn <= true; 
 end if; 
 if (in1.arr1mn and in2.arr1mn) then 
  out1.d1mn   <= min(in1.d1mn, in2.d1mn) + p; 
  out1.arr1mn<= true; 
 end if; 
end process p1; 
p2: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx, 
 in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx) 
 variable r,p: real; 
 variable multipl : real; 
begin      
 multipl := real(ifo_izl);    
 r:= (multipl*0.95 + (0.03*(gauss_rng)));

p:= ((multipl*1.05) + (0.03*(gauss_rng)));  
 if (in1.arr0mx and in2.arr0mx) then 

out1.d0mx   <= max(in1.d0mx, in2.d0mx) + r; 
out1.arr0mx <= true; 

end if; 
if (in1.arr1mx and in2.arr1mx) then 
 out1.d1mx   <= max(in1.d1mx, in2.d1mx) + p; 
 out1.arr1mx<= true; 
end if; 

end process p2; 

initialization: for J in 1 to 600 generate  
encoder_inst: encoder port map (inp => inputs(J), outp => outputs(J)); 
inputs(J) <= (others => (0.0, 0.0, true, true, 0.0, 0.0, true, true));    

end generate; 
log_timing1: process  
 use std.textio.all; 
 file log: text open write_mode is "encoder_mn_r.statdel"; 
 variable line_1: line;  
 variable I, J:integer;  
 variable izlaz: SDA_std_logic_vector(0 to 4);   

variable delay_mn_r : real; 
begin      
 wait for 1 ps;     
 for J in 1 to 600 loop     
  for I in 0 to 4 loop 
   izlaz := outputs(J); 
   delay_mn_r:= izlaz(I).d1mn; 

write (line_1, delay_mn_r, left, 15); 
end loop;    

  writeline (log, line_1);   
 end loop;  

wait;   
end process log_timing1;  



particular delay type. The next two columns give the worst 
case delay estimation results excluding randomness of the 
delay value, without and with the fanouts of each gate. In 
this case all fanouts are equal to one, giving the same 
values in these two columns. The last column shows the 
results of the statistical analysis of the results. It gives the 
mean value and the deviation value of the particular delay 
type. 

TABLE II 
C GATE - STRUCTURAL

statisticaloutput delay 
type 

top. 
level 

min/ 
max 

fan- 
out mean dev. 

mnr 2 1.9ns 1.9ns 1.860 0.460 
mxr 2 2.0ns 2.0ns 2.035 0.421 
mnf 2 1.9ns 1.9ns 1.861 0.436 

1.

mxf 2 2.0ns 2.0ns 2.035 0.443 

Table III shows the simulation results of the four stage 
asynchronous binary counter consisting of 4 T latches. 
Table IV gives the timing analysis results for a generalized 
C-element [18], shown in Figure 9. 

TABLE III 
T COUNTER

statisticaloutput delay 
type 

top. 
level 

min/ 
max 

fan- 
out mean dev. 

mnr 4 3.7ns 3.7ns 3.704 0.705 
mxr 4 3.9ns 3.9ns 3.898 0.071 
mnf 4 3.6ns 3.6ns 3.599 0.681 

1.

mxf 4 3.8ns 3.8ns 3.799 0.687 

Fig. 9. Generalized C element.  

TABLE IV 
GENERALIZED C ELEMENT

statisticaloutput delay 
type 

top. 
level 

min/ 
max 

fan- 
out mean dev. 

mnr 3 2.7ns 2.7ns 2.682 0.058 
mxr 4 4.2ns 4.2ns 4.217 0.071 
mnf 3 3ns 3ns 2.981 0.058 

1.

mxf 4 3.8ns 3.8ns 3.816 0.070 

Fig. 10. Address comparator.  

A simple asynchronous address comparator unit [19] is 
shown in Figure 10, and its simulation results are presented 
in Table V. 

TABLE V 
ADDRESS COMPARATOR

statistical
out.

delay 
type 

topo. 
level 

min/ 
max 

fan- 
out mean dev. 

mnr 1 0.9ns 0.9ns 0.900 0.035 
mxr 1 0.95ns 0.95ns 0.954 0.036 
mnf 1 1.0ns 1ns 1.000 0.036 

1.

mxf 1 1.05ns 1.05ns 1.051 0.035 
mnr 2 2.0ns 2ns 1.999 0.050 
mxr 2 2.1ns 2.1ns 2.101 0.050 
mnf 2 1.8ns 1.8ns 1.801 0.053 

2.

mxf 2 1.9ns 1.9ns 1.905 0.049 
mnr 3 2.8ns 2.8ns 2.773 0.055 
mxr 4 4.0ns 4ns 4.000 0.072 
mnf 3 2.9ns 2.9ns 2.898 0.060 

3.

mxf 4 4.0ns 4ns 4.000 0.072 
mnr 2 2.0ns 2ns 1.999 0.052 
mxr 3 3.05ns 3.05ns 3.051 0.060 
mnf 2 1.8ns 1.8ns 1.802 0.051 

4.

mxf 3 2.95ns 2.95ns 2.954 0.064 
mnr 1 0.9ns 0.9ns 0.900 0.036 
mxr 2 2.0ns 2ns 2.002 0.053 
mnf 1 1.0ns 1ns 1.006 0.035 

5.

mxf 2 2.0ns 2ns 2.002 0.049 

Finally, Figure 11 shows one complex asynchronous 
encoder circuit described in [20], while Table VI gives its 
timing analysis results. 

Fig. 11. Encoder circuit.



TABLE VI 
ENCODER

statistical
out. 

delay 
type 

topo. 
level 

min/ 
max 

fan- 
out mean dev. 

mnr 1 0.90ns 0.9ns 0.902 0.036 
mxr 3 2.85ns 3.8ns 3.823 0.055 
mnf 1 1.00ns 1.0ns 0.999 0.036 

1.

mxf 3 3.15ns 4.2ns 4.218 0.060 
mnr 1 0.9ns 0.9ns 0.900 0.038 
mxr 3 2.95ns 3.9ns 3.917 0.060 
mnf 1 1.00ns 1.0ns 0.998 0.035 

2.

mxf 3 3.05ns 4.1ns 4.121 0.067 
mnr 2 1.80ns 1.8ns 1.802 0.049 
mxr 5 4.95ns 5.9ns 5.957 0.066 
mnf 2 2.00ns 2.0ns 1.999 0.049 

3.

mxf 5 5.15ns 6.2ns 6.263 0.066 
mnr 1 0.90ns 0.9ns 0.901 0.036 
mxr 3 2.85ns 3.8ns 3.819 0.058 
mnf 1 1.00ns 1.0ns 1.001 0.037 

4.

mxf 3 3.15ns 4.2ns 4.222 0.055 
mnr 1 0.90ns 0.9ns 0.897 0.037 
mxr 3 2.95ns 3.9ns 3.920 0.060 
mnf 1 1.00ns 1.0ns 0.999 0.036 

5.

mxf 3 3.05ns 4.1ns 4.120 0.069 

Table VII gives the simulation run times and the 
corresponding allocated memory for all these circuits. 
These results are for 600 timing simulations per circuit, 
achieved on an AMD Athlon processor at 1.14GHz with 
1GB RAM. 

TABLE VII 
SIMULATION RUN TIMES AND ALLOCATED MEMORY

circuit CPU time [s] allocated memory [kB] 
C element 6.4 19.734 
T counter 7.7 20.277 
Addr. comp 8.2 25.734 
Gen C elem 10.5 40.443 
Encoder 28.5 92.583 

VI. CONCLUSION

A new concept for asynchronous circuit delay analysis 
was presented in this paper. The estimation method was 
incorporated into Monte-Carlo analysis, so that the 
obtained results of this analysis represent statistical worst-
case delay ranges. The method generates and exploits 
information about the fanout of each gate implemented in a 
complex digital system and was implemented in VHDL 
and verified on some particular asynchronous circuits. 
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